
 

 

  
 

Abstract— In this paper, we develop the mathematical model 
with a time delay to describe the feedback mechanisms concerning of 
cyclicity of the male hormonal balance on the influence of variations 
in the sex hormone-binding globulin (SHBG) concentration. We 
show that a Hopf bifurcation occurs when a time delay τ  passes 
through a critical value. Numerical simulations are performed to 
illustrate the analytical results. Moreover, this model can explain the 
pulsatile secretion of hormones in male. 

Keywords—Hormone, Time delay, Oscillation, Testosterone, 
SHBG, Hormonal regulation.  

I. INTRODUCTION 
    N males, testosterone (T) is the primary sex hormone that          
‘   has many direct effects on the anatomy and metabolism. 
The biosynthesis of testosterone is controlled with hormonal 
interactions via feedback and feedforward relationships in the 
complex dynamical system. The hypothalamus and pituitary 
gland are important for regulation the amount of testosterone 
produced by the male testes. Testosterone levels rise and then 
fall over the short term (2-3 hours) in humans [1]. To 
stimulate testosterone production, The gonadotropin-releasing 
hormone (GnRH) from the hypothalamus stimulates the 
anterior pituitary to produce luteinizing hormone (LH) which 
travels in the bloodstream  to the testes. LH influences activity 
in the Leydig cells [2,3], where cholesterol is gradually 
changed into a series of compounds until it becomes 
testosterone. When high testosterone level is reached, the level 
of testosterone production is regulated  by a negative-feedback 
to inhibit GnRH secretion which leads to a reduction in  the 
frequency and amount of  pulsatile LH release. As a result, 
testosterone production is dropped [1]. Once testosterone is 
transported in the blood, a large fraction of the circulating 
testosterone        (~ 50%) is tightly bound to sex hormone-
binding globulin (SHBG) and is therefore physiologically 
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inactive [4].  A further approximately 48%  circulates bound  
weakly to albumin and only a small percentage (~ 2%) of 
testosterone  is unbound or free testosterone (FT). Circulating 
bound and free testosterone is collectively referred as total 
testosterone. The free testosterone and albumin-bound 
testosterone, which are physiologically available to the body 
tissues resulting in an effect on the cell, are known as the 
bioavailable testosterone (BioT) [5,6,7]. SHBG is a protein 
produced primarily in the liver. The level of SHBG is one 
factor that determines the total testosterone level [8,9] because 
it binds with high affinity to a large fraction of the 
testosterone in circulation therefore high concentrations of 
SHBG reduce the level of bioavailable testosterone. 
Consequently, the total concentration of testosterone increases 
to maintain adequate levels of bioavailable testosterone [10].   
 Mathematical models for the regulation of male sex 
hormone have been widely studied and developed in order to 
understand the interaction of hormones in dynamic biological 
system for a long time. A simple mathematical model  
describing the hypothalamic-pituitary-gonadal system is 
proposed by Smith [11], it is generalized to explain the 
pulsatile hormone regulation in the GnRH-LH-T axis. We 
denote the concentrations of the GnRH, LH and T respectively 
by ( )R t , ( )L t  and ( )T t . Smith's model comprises three 

differential equations  

( ) ( )

( ) ( )

( ) ( )

1

1 2

2 3

,

,

.

dR f T b R
dt
dL g R b L
dt
dT g L b T
dt

= −

= −

= −

                             (1) 

The positive function 1b , 2b , 3b   refer to clearing rates of  

hormones and  1g , 2g , f  describe the hormone secretion 

rates, where  1b , 2b , 3b , 1g  and 2g  are the monotonic 

increasing functions and the  negative feedback function f  is 
a monotonic decreasing function. In 1983, Smith [12] 
enlarged this model by using a time delay τ  in the T -
equation as a period for traveling the LH hormone from 
pituitary gland to the target cells and actions of 
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gonadotrophins in the gonads. the model is represented as 
delay differential equations 

  

( ) ( )

( ) ( )

( )( ) ( )

1

1 2

2 3

,

,

.

dR f T b R
dt
dL g R b L
dt
dT g L t b T
dt

τ

= −

= −

= − −

                        (2) 

where τ  is a delay associated with the blood circulation time 
in the body. 

 

 

 

 

 
 

Fig.1. The flow and interactions block diagram of the   
hypothalamo-pituitary-gonadal axis in men. 

  Greenhalgh and Khan [14] proposed  the delay differential 
equation model which explains the population dynamics of 
GnRH, LH and T. This model was modified from the models 
of Smith [6,15] and Cartwright and Husain [1] by taking into 
account experimental findings about the hypothalamic-
pituitary-gonadal system. In this model, the only one of four 
equilibrium where all three hormones were presented. They 
analyzed the stability and Hopf bifurcation of the equilibrium. 

It is therefore unstable with no time delay, and Hopf 
bifurcation occurs repeatedly as the time delay increases 
through an infinite sequence of positive values.  

 In this paper, a mathematical model for the hormonal 
regulation of testosterone production in the mechanism of the 
hypothalamic-pituitary-gonadal system which was proposed 
by Greenhalgh & Khan (2009) is enlarged by taking into 
account the influence of variations in the SHBG concentration 
on testosterone level. This system incorporates a discrete 
delay in the time  that LH requires to travel through the 
bloodstream to reach its site of action at the gonads [8]. In 
addition, the existence and stability of steady states of the 
system are considered as well. 
 

II. MATHEMATICAL MODEL FOR THE TESTOSTERONE 
REGULAION 

A. Mathematical Model 

 To develop a mathematical model for  testosterone 
hormonal regulation on the influence of variations in the 
SHBG concentration. We represent

 ( )R t , ( )L t , ( )T t  and  

( )S t  as plasma concentrations of gonadotropin-releasing 

hormone (GnRH), luteinizing hormone (LH), testosterone (T) 
and sex hormone-binding globulin (SHBG) ,  respectively.  
 In order to balance the level of  hormones in the 
bloodstream .Firstly, the merged effect of  T and LH  
influence the production of GnRH by the hypothalamus. At 
low concentrations of  T and LH , there is an increase in the 
production of GnRH with increasing GnRH concentration and 
it is the other way around  when concentrations of T and LH 
are high. Hence, the secretion rate of GnRH is assumed in the 
form 

1
1

2

dR r R R
dt L r T

µ= −
+

                        (3) 

 Secondly, the pituitary secretion of LH is under controlling 
of the positive and negative feedback from GnRH and T, 
respectively. The secretion of LH will be decreased when the 
level of GnRH drops to the low level and T rises to the high 
level. Conversely, the secretion of LH will be increased as the 
GnRH concentration is high and the level of T is low. 
Therefore, the secretion rate of LH is assumed in the form 

1
2

2

dL a RL L
dt R a T

µ= −
+

                 (4) 

     Additionally, as the reason that LH stimulates leydig cells 
to convert cholesterol to T in that it incorporates the time 
delay corresponding to the time for traveling the LH hormone 
from pituitary gland to stimulate the production of T  in the 
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gonads. Hence, The dynamics of testosterone level described 
by the following equation 

( )1 3
dT g L t T T
dt

τ µ= − −                   (5) 

     In order to take into account the influence of variations in 
the SHBG concentration on the testosterone production. 
Equations (3) - (5) are modified as the following equations 

1
1

2

dR r R R
dt L r T

µ= −
+

          (6a) 

 
 

1
2

2

dL a RL L
dt R a T

µ= −
+

                      (6b) 

  ( )1 2 3
dT g L t T g ST T
dt

τ µ= − + −     (6c) 

 
 

1
4

21
dS e S S
dt e T

µ= −
+

                          (6d) 

     The term 2g ST  is added into (6c) to support the dynamics 
of testosterone in the reason that the production of 
testosterone will be increased in order to maintain adequate 
levels of bioavailable testosterone as the levels of SHBG 
elevated. This is supported by experimental study described 
by Winters et al. [12]. Moreover, the first term on the right-
hand side of (6d) represents the rate of  the SHBG production 
which is assumed for  decreasing the hepatic production of 
SHBG by testosterone [10]. In the system (6), the parameters 

1r , 2r , 1a , 2a , 1g , 2g , 1e , 2e , are strictly positive and the 

positive constants 1µ , 2µ , 3µ , 4µ  refer to clearing rates of  
the all four hormones which is proportional to their 
concentration. 

B. Steady state 

 In order to find steady states,  we set  the right hand side  of 
equations (6a) to (6d) to zero. We obtain the four possible 
equilibrium states : 

i) ( ) ( )* * * *
1 1 1 1 1, , , 0,0,0,0E R L T S =  

ii) ( )* * * * 1 310, 0, 1 ,2 2 2 2 2
2 4 2

, , , e

e g
E R L T S µ

µ

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=  

iii) ( )* * * *
3 3 3 3 3, , ,E R L T S =    

1( 1)2 1 14 1 2 1 1 1 2 1, ( 1), ( 1) , ( ( ( 1)))3 11 1 2 4 2 4 2 1 2 4( 1)2
2

e
a

r r e e r r e
ga e e g e

e

µ
µµ µ µ µ µ

µ

−

− − − − − −
−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

iv) ( )
31

2* * * * 11 1 3 31, , , 04 4 4 4 4
1 2 1 11 12

2

, , ,
r

a
g r

g r ga
r

E R L T S
µ

µ µ µ

µ

µ

⎡ ⎤
−⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦ −⎢ ⎥
⎡ ⎤ ⎢ ⎥⎣ ⎦−⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

      As we see, there is only the steady state 3E  that has all 
four hormones presented. It is the positive steady state of our 
equations where 

 

1 1

4 2

1 , 1e a
µ µ

> > 1 2 1

1 2 4

, 1 0r r e
eµ µ

⎡ ⎤
− − >⎢ ⎥

⎣ ⎦
  and 

1 2 1
3 1

1 2 4

1 0r r eg
e

µ
µ µ

⎛ ⎞⎡ ⎤
− − − >⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

. 

     By physically meaning, we will consider only the steady 
state 3E . 

C. Local Stability and local Hopf bifurcation analysis 

Based on the theory of differential equations, we consider 
the Jacobian matrix of our equations evaluated at the positive 
equilibrium 3E , that is 

( )

1 2

1 2

1 2 3

0 0
0 0

0 1

0 0 0

J
e eλτ λτ

φ φ
ε ε

β β β

δ

− −

− −⎡ ⎤
⎢ ⎥−⎢ ⎥= ⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

where 

( ) ( )

( ) ( )

( )

* *
1 3 1 2 3

1 22 2* * * *
3 2 3 3 2 3

* * * *
1 2 3 3 1 2 3 3 ,1 22 2* * * *
3 2 3 3 2 3

1 1 3 2 1 3 3 2 3

*
1 2 3

2*1 2 3

, ,

,

* * *, , ,

r R r r R

L r T L r T

a a T L a a R L

R a T R a T

e e S

e T

g T g L g T

φ φ

ε ε

β β β

δ

+ +

+ +

+

= =

= =

= = =

=
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Therefore the characteristic equation is given by 

  

( )( ) ( )
( )( )

4 3 2
2 3 2 1 1 1

1 1 2 1 1 2 1 1 3

1

1 0

e e

e e

λτ λτ

λτ λτ

λ β λ δβ ε β ε φ λ

ε β φ ε φ β λ δε φ β

− −

− −

− − + + +

+ − − + =
     (7) 

     In order to find the local stability of the steady state, we 
consider the case without delay time τ . Setting 0τ = in (7), 
we have the characteristic equation  

( )4 2
3 2 1 1 1 1 1 2 1 1 3 0λ δβ ε β ε φ λ ε β φ λ δε φ β+ + + + + = .  (8) 

     By using the Routh-Hurwitz criteria, the non-trivial steady 
state is unstable for 0τ = . 

 We now return to the analysis of equation (7) for 0τ ≥ . In 
order  to determine the conditions on the parameters for Hopf 
bifurcation. For the steady state 3E , we let ( ) ( ) ( )u ivλ τ τ τ= +  
where u  and v  are real. The equation (7) becomes 

 

( ) ( )( )( )( )
( )( )( )

( ) ( )( )( )( )

4 3

2

2

3 2 1 1 1

1 1 2 1 1 2

1 1 3

1

1

0

u iv

u iv

u iv u iv

u iv e u iv

e u iv

e e u iv

τ

τ

τ τ

β

δβ ε β ε φ

ε β φ ε φ β

δε φ β

− +

− +

− + − +

+ − − +

+ + + +

+ − − +

+ =

           (9)
  

Separating the real and imaginary parts, we obtain 

 

   

( )
( )

( )
( )

( )
( )

4 4 2 2
1 1 3 2 1

2 3
2

1 1 2 1 2

1 1 2 1 2

2 2
3 1 1 2 1

3 2
2

6 2 sin

(3 )sin

( )sin

( ) cos

( )( cos )

( 3 )( cos 1) 0

u

u

u

u

u

u

u v u v u uv e v

e u v v v

v e v

u e v

u v e v

u uv e v

τ

τ

τ

τ

τ

τ

δε φ β ε β τ

β τ

ε φ β β φ τ

ε β φ φ β τ

δβ ε φ ε β τ

β τ

−

−

−

−

−

−

+ − + + +

− −

− −

+ −

+ − + +

− − − =

  (10) 

and  

 

( )
( )

( )
( )

( )
( )

3 3 3 2
2

2 2
2 1

2 3
2

3 1 1 2 1

1 1 2 1 2

1 1 2 1 2

4 4 ( 3 )sin

( ) sin

(3 )( cos 1)

2 ( cos )

( ) cos

( )sin 0

u

u

u

u

u

u

u v uv v e u uv v

u v e v

u v v e v

uv e v

v e v

u e v

τ

τ

τ

τ

τ

τ

β τ

ε β τ

β τ

δβ ε φ ε β τ

ε β φ φ β τ

ε φ β β φ τ

−

−

−

−

−

−

− + + −

− −

− − −

+ + +

+ −

+ − =

              (11) 

 To determine the existence of a critical delay *τ , the value 

of τ such that ( )* 0u τ =  at which  the switch of stability 

appears. We set *τ τ= and denote ( )*v τ  as *v ,  Equation 

(10) and (11) become 

[ ]( )
( )

*2 * * * *3 * *

2 1 1 1 2 1 2 2

*4 *2

1 1 3 3 1 1

cos( ) sin( )v v v v v

v v

ε β τ ε β φ φ β β τ

δε φ β δβ ε φ

− − +

= + − +
 

(12) 

and 

( )* *3 * *
1 1 2 1 2 2

*2 * * *3 *
2 1 2

( ) cos( )

sin( )

v v v

v v v v

ε β φ φ β β τ

ε β τ β

− +

+ = −
                      (13) 

     Adding up the squares of both equations. Hence, equations 
(12) and (13) reduce to 

  
4 3 2

1 2 3 4( ) 0f w w k w k w k w k= + + + + =     (14) 

where *2w v=  and  
  

        ( )1 3 1 12k δβ ε φ= − +  

  
( )

[ ]

2
2 1 1 3 3 1 1 2

2 2
2 1 1 2 1 2 1 2

2 2

2

k ε φ δβ δβ ε φ β

ε β ε β β φ φ β

= + + −

− − −
 

  ( ) [ ]22
3 1 1 3 3 1 1 1 1 2 1 21 2k ε φ δβ δβ ε φ ε β φ φ β= − + − −  

  2 2 2 2
4 1 1 3k ε φ δ β=   

 The value of critical delay *τ is determined by the necessity 

that ( )* 0u τ = , then the existence of purely imaginary 

eigenvalues depend on whether equation (14) has at least one 
positive real root. To follow this necessity, we state the 
conditions to ensure that equation (14) has a positive real root. 

Lemma.  Let ( )f w  has the three turning points denoted 

by 1 2,α α , 3α  . 

(i)     If 4 0k < , then ( )f w  has at least one positive real root 

(ii) If 4 0k ≥ and there is 0iα >  for some i  such that 

( ) 0if α < , then ( )f w has exactly two positive real 

roots.  
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(iii) If ( ) 0if α >  for all i , then ( )f w has no the positive 

real roots. 
 

Thus, if the solution of the equation (14) exists, we can solve 

for the critical time delays *τ  by substituting *v  into equation 
(12) and (13). We obtain 

  *7 *5 *3 *
1 2 ( 1)* 1 2 3 4arcsin* *

m v m v m v m v k
nv v

πτ
+ + −⎛ ⎞ −

⎜ ⎟= +
⎜ ⎟
⎝ ⎠

(15) 
where  
 

1 2m β= −  

( )2 2 1 2 2 3 1 1 1 1 2 1 2m ε β β β δβ ε φ ε β φ φ β⎡ ⎤= + + − −⎣ ⎦
 

( )3 1 3 1 1 1 2 1 2 2 1 1 1 2 3m ε δβ ε φ β φ φ β ε β δε φ β β⎡ ⎤= + − − −⎣ ⎦
 

2
4 1 1 3 1 2 1 2m δε φ β β φ φ β⎡ ⎤= −⎣ ⎦

 

( ) ( )2 2*2 *3 *
2 1 2 1 1 2 1 2n v v vε β β ε β φ φ β⎡ ⎤= + + −⎣ ⎦

 

 
and  0,1,2,...k = . 
 
 We now show that the system of delay differential 
equations (6a)-(6d) exhibits the Hopf  bifurcation as the value 

of time delay τ  passes through the critical value *τ by 
showing that 

*

0du
d τ ττ =

≠  

From equation (10) and (11), we find the differentiation with 
respect to τ  and evaluate at *τ τ= for which 

( )* 0u τ = and ( )* *v vτ = . We then obtain 

       * *

du dvP Q R
d dτ τ τ ττ τ= =

+ =                 (16) 

     
  

( )
* *

du dvQ P S
d dτ τ τ ττ τ= =

− + =            (17) 

 

where   

             

  
( ) ( )

( ) ( )

*2
2

*2 * *2 * *
2 2 1 1 1 2 1 2

* * *3 * * * *
2 1 2 1 1 2 1 2

1 3

3 cos

2 sin

P v

v v v

v v v v

β

β ε β τ ε β φ φ β τ

ε β β τ τ ε β φ φ β τ

= −

+ + + −

+ − − −

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

 ( )
( ) ( )

( ) ( )

*3 *
3 1 1

* *3 * * * * *
2 2 1 1 1 2 1 2

*2 * *2 * *
2 2 1 1 1 2 1 2

4 2

2 cos

3 sin

Q v v

v v v v

v v v

δβ ε φ

β τ ε β τ ε β φ φ β τ

β ε β τ ε β φ φ β τ

= − +

+ − + −

+ + + −

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

 ( )( ) ( )
( )

*4 *2 * *
2 1 1 2 1 2

3 * *
2 1

cos

sin

R v v v

v v

β ε β φ φ β τ

ε β τ

= − − −

−
 

 

( )
( )( ) ( )

*3 * *
2 1

*4 *2 * *
2 1 1 2 1 2

cos

sin

S v v

v v v

ε β τ

β ε β φ φ β τ

= −

+ + −
 

 

By solving equations (16) and (17) , we have 

 *
2 2

du PR QS
d P Qτ ττ =

−
=

+
                 (18) 

Consider 

       
( )

( )
( )

( ) ( )

*8 *6

3 1 1

2 2 2

1 1 3 3 1 1 2 1

*4

1 2 1 2 1 2 2

22 *2

1 1 2 1 2 1 1 3 3 1 1

4 6

( 4 2 2

4 4 )

(1 2 )

PR QS v v

v

v

δβ ε φ

δε φ β δβ ε φ ε β

ε β β φ φ β β

ε β φ φ β δε φ β δβ ε φ

− = − +

+ + + −

− − −

+ − − − +

 

                         

      

( )

*2 *6 *4

3 1 1

2 2 2

1 1 3 3 1 1 2 1

*2

1 2 1 2 1 2 2

2 2

1 1 3 3 1 1 1 1 2 1 2

(4 6( )

(4 2( ) 2

4 ( ) 4 )

(1 2 ( ) ))

v v v

v

δβ ε φ

δε φ β δβ ε φ ε β

ε β β φ φ β β

δε φ β δβ ε φ ε β φ φ β

= − +

+ + + −

− − −

+ − + − −
 

  ( )*2 3 2

1 2 34 3 2v w k w k w k= + + +  

  
*2

*2 ( )

w v

df w
v

dw =

= ⋅  
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     Since  
( )df w

dw
  equal to zero where w  is the turning point 

of f . Following on from the Lemma, we see that  

*2

( )
0

w v

df w
dw =

≠ . Thus, we can conclude that  

*
2 2

0
du PR QS
d P Qτ ττ =

−
= ≠

+
                 (19) 

Therefore, the Hopf bifurcation arises as τ  passes through the 

critical value *τ . 

III. NUMERICAL RESULTS 
      Testosterone is altered by the hormonal milieu. In order to 
show the quantitative behavior of the three hormones involved 
in Testosterone regulation with relation to circulating SHBG 
levels. We conduct numerical simulations with the same 
realistic parameter values that Greenhalgh and Khan[14] used 
in simulation. For the other parameters, we take 

2 0.0092g = /min, 1 5.9e = /min, 2 0.3e =  and 

4 0.031µ = /min which correspond to the steady state 3E  and 
the normal range of hormone levels. After hundreds of 
numerical simulations, we find that the system is 
asymptotically stable when * 123.47τ τ< ≈ . Fig.2 shows 
that the equilibrium 3E is asymptotically stable where 

120τ = . As shown in Fig. 3, the system undergoes a Hopf 
bifurcation occurs near the positive equilibrium   

( )3 1.07, 4.95, 641.83,1.28E  where 
* 123.47τ τ> ≈ .The 

oscillatory characteristics of hormone regulations agree well 
with experimental data and other simulated hormone 
fluctuation levels. 

IV. CONCLUSION 
     The mathematical model developed in this paper 
describes the feedback mechanisms in consideration of 
cyclicity of the male hormonal balance on the influence of 
variations in the SHBG concentration. Levels of total 
testosterone can, therefore, be directly affected by changes in 
levels of SHBG to maintain a constant concentration of free 
testosterone. In addition, we used a time delay τ in the model 
to explain a period for traveling the LH hormone from 
pituitary gland to the target cells and actions of 
gonadotrophins in the gonads. 

We investigated our equations that incorporate a discrete 
delay in the time. In order to show that Hopf bifurcation can 
occur, the numerical simulations are given to explain the 
analytical results. We found that a family of periodic solutions 
bifurcate from the equilibrium when τ passes through a 
critical value. Moreover, this model predicts the changes in 
the cycle in correspondence with the influence of  

R
 (p

g/
m

l)

Time (minutes)

T 
(n

g/
dl

)

Time (minutes)

µ

 
Fig 2. Numerical simulations for equation (6a)-(6d) with     

120τ = . The positive equilibrium is asymptotically 
stable. The initial value is (1, 5, 600, 1) 
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g/
dl
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Time (minutes)
 

S 
(  

 g
/d

l)
µ

 

Fig 3. Numerical simulations for the equation (6a)-(6d) with 
124τ = . Hopf bifurcation occurs from the         

positive equilibrium. The initial value is (1, 5, 600, 1) 

variations in the SHBG concentration on the testosterone 
production. This model can explain the pulsatile secretion of 
hormones in male [16] as well as concentration curves 
correspond to the experimental data well [17,18]. 
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